Как строить графики в python

Графики функций и поверхностей в Python Питон Matplotlib

Построение графиков с помощью модуля Matplotlib в Python Питон.

В этом уроке мы разберём, как строить графики функций с помощью модуля Matplotlib в Python Питон.
Matplotlib это библиотека для Python, предназначенная для визуализации данных. В данном уроке мы разберём построение графиков функций в Питон на плоскости и построение поверхности в трёхмерном пространстве. Зачастую, именно Matplotlib используется в научных исследованиях и конференциях для демонстрации полученных данных.
Для построения графиков нужно импортировать модуль Pyplot. Pyplot это модуль для работы с графиками в Питоне. Pyplot это набор команд, созданных для построения графиков функций и уравнений. Для удобного построения графиков так же нужно использовать библиотеку NumPy.
Matplotlib, как и NumPy, встроен в среду разработки Spyder, поэтому их можно импортировать без предварительной установки.
import numpy as np
import matplotlib.pyplot as plt
as np и as plt означает, что когда мы будем вызывать функции и процедуры из модулей, вместо названия модулей мы будем использовать np и plt .
Для построения графика функции в Python нужно задать саму функцию. Её можно задать с помощью лямбда-функции. Лямбда-функция — это краткий способ записи обычной функции в одну строчку. В этом уроке мы рассмотрим построение синусоиды на Питоне. Синусоида задаётся функцией f(x) = sin(x) .
y = lambda x: np.sin(x)
y это обозначение функции (для её вызова мы будем использовать y(x) ), lambda это ключевое слово, обозначающее начало задания лямбда-функции, x это аргумент, использующийся в функции, после двоеточия задаётся функция. Так как в стандартном Python нет функции, возвращающей синус x , мы его задаём с помощью NumPy, его мы импортировали под именем np .
Все действия в Pyplot производятся на рисунках. Для построения графика функции в Python нужно сначала задать сетку координат. Сетка координат в python задается с помощью команды plt.subplots().
fig = plt.subplots()
Мы должны определить область значений, на которой мы будем строить график функции в Питоне. Это делается с помощью linspace .
x = np.linspace(-3, 3, 100)
linspace создаёт массив с нижней границей -3 и верхней границей 3 , в созданном массиве будет 100 элементов. Чем больше будет последнее число, тем больше значений функции будет рассчитываться, тем точнее будет отображаться график в Python.
После того, как мы создали систему координат, область построения, мы можем построить график в Питон. Для построения графика фуекции в Python нужно использовать команду plt.plot(x, y(x)) , где x это аргумент, y(x) это функция от x , заданная с помощью лямбда-выражения.
plt.plot(x, y(x))
После того, как мы построили график в Python, нужно показать его на рисунке. Для этого используется plt.show() .
Полный код программы на python для рисования графика функции
# импортируем модули
import numpy as np
import matplotlib.pyplot as plt
# функция
y = lambda x: np.sin(x)
# создаём рисунок с координатную плоскость
fig = plt.subplots()
# создаём область, в которой будет
# — отображаться график
x = np.linspace( -3, 3, 100)
# значения x, которые будут отображены
# количество элементов в созданном массиве
# — качество прорисовки графика
# рисуем график
plt.plot(x, y(x))
# показываем график
plt.show()

Получим график синусоиды в python в отдельном окне

график функции на Python

Отображение нескольких графиков на одном рисунке в Python

В одной области в python можно отобразить графики нескольких функций. Добавим aeyrwb. y=x и нарисуем ее совместно с синусоидой.
Для этого введем еще одну функцию с помощью lambda
y1=lambda x: x
Построим график этой функции
plt.plot(x,y1(x))
В итоге программа в Python для построения графиков двух функций в одном окне

# импортируем модули
import numpy as np
import matplotlib.pyplot as plt
# функция
y = lambda x: np.sin(x)
y1=lambda x: x
# создаём рисунок с координатную плоскость
fig = plt.subplots()
# создаём область, в которой будет
# — отображаться график
x = np.linspace(-3, 3,100)
# значения x, которые будут отображены
# количество элементов в созданном массиве
# — качество прорисовки графика
# рисуем график
plt.plot(x, y(x))
plt.plot(x,y1(x))
# показываем график
plt.show()

построение графика двух функций в python

Трехмерные поверхности в Python

В трёхмерном пространстве каждая точка задаётся тремя координатами, следовательно, в трёхмерном пространстве нужно два аргумента для задания функции. В этом уроке по Питону мы зададим функцию
f(x,y)=x^2-y^2
от двух аргументов. Аргументы x и y , функция z .
f = lambda x, y: x ** 2 — y ** 2
Чтобы начать рисовать трехмерные поверхности в Python нужно сначал задать область построения с помощью функции plt.figure принимает параметр figsize(x, y) , где x и y – ширина и высота рисунка в дюймах. Создадим рисунок в Python размером 12×6 дюймов для отображения графиков
fig = plt.figure(figsize = (12, 6))
В построенной области мы создадим рисунок, в котором будут отображено трёхмерное пространство с координатными осями и сама поверхность. В Питоне для этого используется fig.add_subplot() .
ax = fig.add_subplot(1, 1, 1, projection = '3d')
Функция в Python fig.add_subplot() разбивает область построения на клетки и задает в какой клетке рисовать трехмерный график. Так команда ax = fig.add_subplot(1, 1, 1, projection = '3d') разбивает область построения на две клтки и в первую клетку будет отображаться трехмерный гарфик, благодаря аргументу projection = ‘3d’
Введём области отображения функции для каждого аргумента в Питон.
xval = np.linspace(-5, 5, 100)
yval = np.linspace(-5, 5, 100)
Нужно создать поверхность, которая будет отображаться на рисунке в Python. Для этого используется
surf = ax.plot_surface(x, y, z, rstride = 4, cstride = 4, cmap = cm.plasma)
Где x и y это принимаемые аргументы, z это получаемая функция, rstride и cstride отвечает за шаг прорисовки поверхности в Питон, чем меньше будут эти значения, тем более плавно будет выглядеть градиент на поверхности. С помощью cmap.plasma поверхность будет отображаться с цветовой схемой plasma . Например, существуют цветовые схемы, такие как viridis и magma . Полный список цветовых схем есть на сайте Matplotlib.
Пример программы на Python построение поверхности в трёхмерном пространстве # импортируем модули
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
# уравнение поверхности
f = lambda x, y: x ** 2 — y ** 2
# создаём полотно для рисунка
fig = plt.figure(figsize = (10, 10))
# создаём рисунок пространства с поверхностью
ax = fig.add_subplot(1, 1, 1, projection = '3d')
# размечаем границы осей для аргументов
xval = np.linspace(-4, 4, 100)
yval = np.linspace(-4, 4, 100)
# создаём массив с xval столбцами и yval строками
# — в этом массиве будут храниться значения z
x, y = np.meshgrid(xval, yval)
# приравниваем z к функции от x и y
z = f(x, y)
# создаём поверхность
surf = ax.plot_surface(
# отмечаем аргументы и уравнение поверхности
x, y, z,
# шаг прорисовки сетки
# — чем меньше значение, тем плавнее
# — будет градиент на поверхности
rstride = 10,
cstride = 10,
# цветовая схема plasma
cmap = cm.plasma)

Получим график трехмерной поверхности в цветовой гамме в специальном окне

график трехмерной поверхности в python

Изменим параметры построения трехмерной поверхности, уменьшим размер сетик, сделаем поверхность более плавной и точной для этого уменьшаем параметры и сменим цветовую гамму на viridis

rstride = 2,
cstride = 2,
cmap = cm.viridis)

Получим график трехмерной поверхности в Python более точный и в другой цветовой гамме

трехмерная поверхность в Python

Вернуться к содержанию курса python Следующая тема Классы в Питон

3-Мерные графики в Python с использованием Matplotlib

Как и 2-мерные графики, вы также можете создавать 3-мерные графики в Python с помощью matplotlib. В этом уроке мы узнаем, как строить трехмерные графики с помощью matplotlib.

Как построить трехмерные графики в Python?

Мы будем использовать инструментарий mplot3d вместе с библиотекой matplotlib . Инструментарий mplot3d построен на базе библиотеки matplotlib, чтобы упростить создание трехмерных графиков.

Так что без дальнейших задержек, давайте начнем!

1. Импортируйте необходимые модули

Для начала мы импортируем matplotlib и инструментарий mplot3d . Наряду с этими двумя, мы также импортируем numpy для создания образцов данных. Код для импорта этих трех приведен ниже.

2. Создайте трехмерные оси

Теперь мы можем создавать трехмерные оси, используя импортированные модули .

Теперь, когда у нас есть топоры, давайте попробуем что-нибудь придумать. При построении графика нам нужно убедиться,что мы предоставляем значения для всех трех осей ( x, y и z).

В следующих разделах мы узнаем, как сделать спираль, используя синусоидальные функции(синус и косинус).

Перед этим мы узнаем, как добавить заголовок к сюжету.

3. Добавление заголовка к сюжету

Вы можете добавить заголовок к своим участкам с помощью метода set_title():

Чтобы увидеть приведенную выше строку кода в действии, выполните следующие действия:

4. Создайте спираль

Для создания спирали мы будем использовать функцию синуса вдоль оси x и функцию косинуса вдоль оси y.

Точки данных для спирали могут быть сгенерированы следующим образом:

Здесь функция np.linspace дает 1000 точек с равным расстоянием между 0 и 15.

Полный код выглядит следующим образом:

5. Измените угол обзора

Трехмерные графики выглядят по-разному в зависимости от угла обзора. Вы можете изменить угол обзора трехмерных графиков с помощью метода view_init():

Полный код приведен ниже:

Здесь мы упоминаем два аргумента: высоту и угол наклона осей(в градусах).

Давайте попробуем под другим углом.

6. Построение каркаса из проволоки

Вы можете построить трехмерный каркас с помощью метода plot_wireframe (), как показано в приведенном ниже примере:

Здесь функция np.meshgrid создает матрицы координат из векторов координат.

Аналогично, вы также можете создать поверхностный участок. Давайте узнаем, как это сделать, в следующем разделе.

7. Создайте поверхностный участок

Мы можем создать поверхностный график с теми же данными, что и выше. Чтобы создать трехмерный график поверхности, мы будем использовать метод plot_surface ().

Здесь следующие аргументы означают следующее:

шаг Шаг строки массива (размер шага)
cstrike Шаг столбца массива (размер шага)
лагерь Цветовая карта для участков поверхности.

Вывод

В этом уроке речь шла о трехмерных графиках на Python. Мы научились строить трехмерные оси вместе с точками данных. Чтобы узнать больше о трехмерных фигурах в mplot3d, обратитесь к их официальной документации.

Как строить красивые графики на Python с Seaborn

Визуализация данных — это метод, который позволяет специалистам по анализу данных преобразовывать сырые данные в диаграммы и графики, которые несут ценную информацию. Диаграммы уменьшают сложность данных и делают более понятными для любого пользователя.

Есть множество инструментов для визуализации данных, таких как Tableau, Power BI, ChartBlocks и других, которые являются no-code инструментами. Они очень мощные, и у каждого своя аудитория. Однако для работы с сырыми данными, требующими обработки, а также в качестве песочницы, Python подойдет лучше всего.

Несмотря на то, что этот путь сложнее и требует умения программировать, Python позволит вам провести любые манипуляции, преобразования и визуализировать ваши данные. Он идеально подходит для специалистов по анализу данных.

Python — лучший инструмент для data science и этому много причин, но самая важная — это его экосистема библиотек. Для работы с данными в Python есть много замечательных библиотек, таких как numpy , pandas , matplotlib , tensorflow .

Matplotlib , вероятно, самая известная библиотека для построения графиков, которая доступна в Python и других языках программирования, таких как R. Именно ее уровень кастомизации и удобства в использовании ставит ее на первое место. Однако с некоторыми действиями и кастомизациями во время ее использования бывает справиться нелегко.

Разработчики создали новую библиотеку на основе matplotlib , которая называется seaborn . Seaborn такая же мощная, как и matplotlib , но в то же время предоставляет большую абстракцию для упрощения графиков и привносит некоторые уникальные функции.

В этой статье мы сосредоточимся на том, как работать с seaborn для создания первоклассных графиков. Если хотите, можете создать новый проект и повторить все шаги или просто обратиться к моему руководству по seaborn на GitHub.

Что такое Seaborn?

Seaborn — это библиотека для создания статистических графиков на Python. Она основывается на matplotlib и тесно взаимодействует со структурами данных pandas.

Архитектура Seaborn позволяет вам быстро изучить и понять свои данные. Seaborn захватывает целые фреймы данных или массивы, в которых содержатся все ваши данные, и выполняет все внутренние функции, нужные для семантического маппинга и статистической агрегации для преобразования данных в информативные графики.

Она абстрагирует сложность, позволяя вам проектировать графики в соответствии с вашими нуждами.

Установка Seaborn

Установить seaborn так же просто, как и любую другую библиотеку, для этого вам понадобится ваш любимый менеджер пакетов Python. Во время установки seaborn библиотека установит все зависимости, включая matplotlib , pandas , numpy и scipy .

Давайте уже установим seaborn и, конечно же, также пакет notebook , чтобы получить доступ к песочнице с данными.

Помимо этого, перед началом работы давайте импортируем несколько модулей.

Строим первые графики

Перед тем, как мы начнем строить графики, нам нужны данные. Прелесть seaborn в том, что он работает непосредственно с объектами dataframe из pandas , что делает ее очень удобной. Более того, библиотека поставляется с некоторыми встроенными наборами данных, которые можно использовать прямо из кода, и не загружать файлы вручную.

Как строить красивые графики на Python с Seaborn

Визуализация данных — это метод, который позволяет специалистам по анализу данных преобразовывать сырые данные в диаграммы и графики, которые несут ценную информацию. Диаграммы уменьшают сложность данных и делают более понятными для любого пользователя.

Есть множество инструментов для визуализации данных, таких как Tableau, Power BI, ChartBlocks и других, которые являются no-code инструментами. Они очень мощные, и у каждого своя аудитория. Однако для работы с сырыми данными, требующими обработки, а также в качестве песочницы, Python подойдет лучше всего.

Несмотря на то, что этот путь сложнее и требует умения программировать, Python позволит вам провести любые манипуляции, преобразования и визуализировать ваши данные. Он идеально подходит для специалистов по анализу данных.

Python — лучший инструмент для data science и этому много причин, но самая важная — это его экосистема библиотек. Для работы с данными в Python есть много замечательных библиотек, таких как numpy , pandas , matplotlib , tensorflow .

Matplotlib , вероятно, самая известная библиотека для построения графиков, которая доступна в Python и других языках программирования, таких как R. Именно ее уровень кастомизации и удобства в использовании ставит ее на первое место. Однако с некоторыми действиями и кастомизациями во время ее использования бывает справиться нелегко.

Разработчики создали новую библиотеку на основе matplotlib , которая называется seaborn . Seaborn такая же мощная, как и matplotlib , но в то же время предоставляет большую абстракцию для упрощения графиков и привносит некоторые уникальные функции.

В этой статье мы сосредоточимся на том, как работать с seaborn для создания первоклассных графиков. Если хотите, можете создать новый проект и повторить все шаги или просто обратиться к моему руководству по seaborn на GitHub.

Что такое Seaborn?

Seaborn — это библиотека для создания статистических графиков на Python. Она основывается на matplotlib и тесно взаимодействует со структурами данных pandas.

Архитектура Seaborn позволяет вам быстро изучить и понять свои данные. Seaborn захватывает целые фреймы данных или массивы, в которых содержатся все ваши данные, и выполняет все внутренние функции, нужные для семантического маппинга и статистической агрегации для преобразования данных в информативные графики.

Она абстрагирует сложность, позволяя вам проектировать графики в соответствии с вашими нуждами.

Установка Seaborn

Установить seaborn так же просто, как и любую другую библиотеку, для этого вам понадобится ваш любимый менеджер пакетов Python. Во время установки seaborn библиотека установит все зависимости, включая matplotlib , pandas , numpy и scipy .

Давайте уже установим seaborn и, конечно же, также пакет notebook , чтобы получить доступ к песочнице с данными.

Помимо этого, перед началом работы давайте импортируем несколько модулей.

Строим первые графики

Перед тем, как мы начнем строить графики, нам нужны данные. Прелесть seaborn в том, что он работает непосредственно с объектами dataframe из pandas , что делает ее очень удобной. Более того, библиотека поставляется с некоторыми встроенными наборами данных, которые можно использовать прямо из кода, и не загружать файлы вручную.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *